<p class="ql-block"> 數學課堂教學評優活動已經走過了6個年頭,本屆活動我們對標課標要求,順應改革趨勢,確定了“聚焦核心素養,走向深度學習”的主題,活動上展示的15節數學課在引導學生探究知識本質,發展學生思維上作出了有益的探索,引發了我們對新課標理念下促進學生深度學習的思考。</p> <p class="ql-block"><b style="color:rgb(255, 138, 0);">一、積極情感,讓學生“樂”學</b></p><p class="ql-block">小學階段學生以具體形象思維為主,而數學知識具有較強的抽象性,學生積極參與是深度學習發生的內在動力和基本前提,輕松愉悅的課堂氛圍可以讓學生產生一種安全的心理體驗,讓學生更加主動、全身心地投入到學習活動中。因此,教學中我們首先應該關注學生的興趣點,密切聯系學生的現實生活,將抽象的數學知識融入學生學生喜聞樂見的生活情境、故事情境、問題情境,讓枯燥的數學知識變得鮮活、靈動,讓學生在好玩、有趣的情境中不知不覺地融入數學學習當中,這樣的學習才會更加主動、深刻,深度學習才能真正發生。</p><p class="ql-block">如在“單價、數量和總價”這節課中,老師以超市購物的情境為主線,將逛超市的視頻素材與教學內容緊密結合,一條情境主線,不僅讓課堂教學完整、流暢,而且現實的生活情境更能激發學生的探究熱情,學生的學習興趣較濃。“分段計費問題”,通過創設學生熟悉的平利景點“芍藥谷”的情境,引發學生的思考:老師乘出租車去芍藥谷花了多少錢呢?這樣的問題情境貼近學生的生活,學生更樂于探究。“用字母表示數”一課,老師以夢想為話題,用學生喜歡的動畫創設生動的情境,引出動畫主人公娜娜與航天員劉洋的年齡之間的關系,生動有趣的學習素材激發了學生學習的興趣,點燃了學生學習的熱情。</p><p class="ql-block"><b style="color:rgb(255, 138, 0);">二、操作體驗,讓學生“真”學</b></p><p class="ql-block">數學學習不能停留在簡單的“告知”,而是一種學生在學習活動中實實在在的體驗和積淀。荷蘭著名數學教育家弗賴登塔爾說過 “學習數學的唯一正確方法是實行再創造,也就是學生本人把要學的東西自己去發現或創造出來,教師的任務是引導和幫助學生進行這種再創造的工作,而不是把現成的知識灌輸給學生。”這就需要我們教師要“退出來”、“慢下來”,把學生推到課堂的正中央,不急于給出結論,慢慢引導,讓學生在經歷知識的形成過程中對知識有更深入的理解,學生在后續學習中,靈活應用、遷移學習新知的能力才會更強。因此,在教學中要為學生提供從事數學實踐活動的機會,讓學生能夠在動手、動腦中獲得知識、發展思維,在交流、辨析中深度體驗、感悟理解。 </p><p class="ql-block">如“分數的意義”一課,基于“數源于數”這一理念,教學中讓學生結合數軸數分數的活動,不僅讓學生知道分數同整數一樣,也是可以數出來的,而且數的都是它們的計數單位,同時,在這一環節中自然生成“分數單位”的概念,學生結合數軸圖既明白了分數單位的含義,也在數分數單位的過程中真正理解了分數單位的本質也是單位,這些單位的不斷累加就會得出不同的分數,突顯了數概念教學的一致性。</p><p class="ql-block">“梯形的面積”“平行四邊形的面積”“長方形、正方形的面積”這幾節課中,老師的關注點不限于怎么計算面積的方法,而是更加注重對計算公式的推導過程,課堂上都能夠給學生充分的觀察、操作、比較等活動時間和空間,學生在豐富的活動中經歷知識的形成過程,不斷積累了活動經驗,加深了對面積計算公式的理解。</p><p class="ql-block">“倍的認識”一課,老師組織學生通過圈一圈、畫一畫等活動,將抽象的概念形象化、直觀化,幫助學生建夠了倍的模型,發展了學生的幾何直觀。“認識幾分之一”這節課中,老師通過讓學生折一折、畫一畫、涂一涂、說一說等活動,幫助學生逐步建立幾分之一的分數模型,更加直觀地理解了幾分之一的意義。</p><p class="ql-block"><b style="color:rgb(255, 138, 0);">三、追本溯源,讓學生“深”學</b></p><p class="ql-block">追本溯源,把握數學本質,是深度學習的重要基礎。數學是一門講道理的學科,數學道理指的就是數學知識的本質,數學的本質決定著深度學習的“高度”。在教學中我們要處理好“知其然”和“知其所以然”之間的關系,首先我們教師應該成為一名“明理”的老師,要立足知識的本質深鉆教材,明晰顯性知識背后的道理,通過層層設問、交流辨析等活動,不斷引導學生從淺層模仿走向深度思考,從表層認識走向深刻理解。</p><p class="ql-block">如在“除數是整數的小數除法”一課中,老師并不滿足于讓學生掌握除數是整數的小數除法的計算方法,而是創造性使用教材,創設學生熟悉的“買書”情境:先引導學生結合熟悉的人民幣素材理解有余數除法繼續往下除的道理,然后過渡到利用圖形從“計數單位”的角度解釋豎式的計算過程,學生從從“量”到“數”,從具體到抽象,進一步感受到了除法計算就是計數單位不斷細分的過程,學習在學習過程中不僅理解了算理,掌握了算法,同時也體現了小數除法的核心本質,即十進制單位的細分。</p><p class="ql-block">“梯形的面積”一課,通過倍拼法、分割法、割補法推到出梯形的面積公式后,引發學生的思考:不同的方法推導出了梯形的面積計算公式,拼接法是將兩個完全相同的梯形拼成一個平行四邊形,所以梯形的面積要除以2,分割法和割補法都只用了一個梯形,為什么也要除以2呢?這一核心的問題,把學生的思考引向深處,使學生明確了每種推導過程中除以2 的本質是不一樣的,學生在這一學習過程中,不僅知道了“是什么”,更清晰的理解了“為什么”。</p><p class="ql-block"><b style="color:rgb(255, 138, 0);">四、建立聯系,讓學生“活”學</b></p><p class="ql-block">學生的認知能力和思維能力是隨著年齡的變化而變化的,所以教材在數學知識的編排上呈螺旋上升式,會將同一知識點或同一類型的知識分布在不同的學段,一定程度上導致知識的呈現方式是零散的,思維也是點狀思維為主,這樣的學習不僅阻礙了知識的深度理解,也會影響學生的遷移應用。因此,在教學中,教師要有“建立聯系”的意識,要引導學生在數學知識之間、數學與其他學科之間、數學與生活之間、數學與已有認知經驗之間建立聯系,幫助學生形成清晰、穩固的認知結構,當知識之間的聯系越緊密,學生提取與檢索時越快,越能激活學生的認知經驗,盤活學生的知識脈絡,促進學生靈活運用數學知識解決問題,從而實現深度學習。</p><p class="ql-block">如在“梯形的面積”這節課的教學中,老師在練習設計中巧妙地將平行四邊形、三角形和梯形三者之間的關系溝通連接,打通了不同方法之間相通的地方,幫助學生更深入地理解了圖形面積的計算方法。“除數是整數的小數除法”一課,老師引導學生通過對比觀察,溝通了整數除法和小數除法之間的聯系,讓學生感悟到數運算本質的一致性,發展了學生的推理意識和運算能力。</p><p class="ql-block"><b style="color:rgb(255, 138, 0);">五、質疑問難,讓學生“會”學</b></p><p class="ql-block">學起于思,思源于疑;學貴有疑,小疑則小進,大疑則大進 。質疑是求知的觸發器,是深度學習的催化劑。在教學中我們不僅要關注學生“分析和解決問題的能力”,更要關注“發現和提出問題的能力”,只有會問才更會學。在學習的過程中教師要給學生質疑問難的時間和空間,既要鼓勵學生大膽質疑,讓學生“敢問”,又要引導學生提出有價值的問題,讓學生“善問”,從而引發學生深度思考,讓知識的學習從淺層走向深刻。</p><p class="ql-block">如“分段計費問題”一課,當學生在畫線段圖理解題意時出現了不同的畫法后,老師并沒有急于給予評價,而是充分利用生成資源,鼓勵學生大膽質疑:針對這兩種不同的畫法,你有什么疑問呢?學生的思維迅速被激活,有學生立即就反問到:你畫的線段圖中,超過3千米的部分畫那么多段什么意思?在這一過程中,生生之間的交流互動引發了學生思維的碰撞,很好地促進了對題意的深度理解。</p><p class="ql-block"><b style="color:rgb(255, 138, 0);">六、數學思想,讓學生“ 善”學</b></p><p class="ql-block">“作為知識的數學,出校門不到兩年就忘了,唯有深深銘記在頭腦中的數學精神、數學思想、理性思維,這些隨時隨地發生作用,使學生受益終身。”數學思想、數學精神是數學的精髓和靈魂,是數學認知過程中提煉上升的數學觀點方法,是數學知識轉化成能力的紐帶。深度學習就是要以數學思想、數學精神來統領數學知識的學習,發揮其應有的價值。教學中,若忽視數學思想,學生大腦里只是知識方法的簡單堆積和機械記憶,不能夠形成結構化的能力,也就缺乏分析、解決問題的能力。因此,教學中要抓住數學知識中蘊含的數學思想方法,在相關的各個教學環節,適當滲透或點明,使數學思想方法在恰當情境中滋生,從而培養學生靈活解決問題的能力以及理性嚴謹的思維品質。</p><p class="ql-block">如“平行與垂直”一課,老師以分類思想為主線,引導學生將同一平面內的直線關系分為相交和不相交兩類,在相交的兩條直線中,又分為相交成直角和不成直角兩類,學生在這種“剝筍式”分類研究中發現問題、分析問題、解決問題,不僅使幾種位置關系更加清晰,也培養了學生的數學思維品質。“植樹問題”一課中,三種植樹情況為什么會不同,老師引導學生按“一棵樹對應一個間隔”的方法在圖上畫一畫,通過“一一對應”的思想分析植樹問題的規律,加深了學生對三種植樹情況模型的建構與理解,有效促進了學生思維不斷走向深入。</p> <p class="ql-block">認真學習的老師,必須贊一個??????</p> <p class="ql-block"> 學習的深度決定著思維的廣度和學習的效度,深度學習既是教學改革所趨,更是學生成長所需,讓我們聚焦“三會”目標,深刻把握數學學科特性,揚優勢,補短板,優化課堂教學設計,引導學生樂學、真學、深學、活學、會學、善學,在課堂播撒希望、傳承智慧、收獲信心,為學生終身學習奠定堅實基礎。</p>
主站蜘蛛池模板:
兰西县|
湄潭县|
平乡县|
乳源|
霍林郭勒市|
长岛县|
高要市|
泾源县|
泰和县|
永新县|
隆化县|
潜江市|
清徐县|
宁夏|
永吉县|
定襄县|
宁海县|
尼勒克县|
五台县|
高州市|
肃北|
彝良县|
高碑店市|
固镇县|
武陟县|
龙江县|
固安县|
龙川县|
澄江县|
陇川县|
龙游县|
南木林县|
吉林省|
富源县|
晋州市|
龙游县|
白银市|
马关县|
淮安市|
阿荣旗|
福安市|